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Abstract

A number of features relevant to stochastic dynamical systems, such as moments of solutions and first passage times,

can be efficiently computed resorting to sequences of quasi-random numbers (low-discrepancy sequences). This method

represents an alternative choice to the use of pseudorandom numbers, provided that a special care is paid to keep suf-

ficiently uncorrelated as well as uniform the former sequences.
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1. Introduction

Analyzing random phenomena, for instance the effect of random perturbations on otherwise deterministic
dynamical systems, is of paramount importance in a variety of problems, being rather ubiquitous. Within

such difficult problems, an explicit analytical solution can be hardly found, thus pushing to the search for

asymptotic or numerical methods. Effective numerical methods for integrating stochastic dynamical systems

(that is systems of stochastic differential equations, SDEs) are based, as a rule, on the generation of suitable

sequences of random numbers, which are often called ‘‘pseudorandom’’, to stress that ideal randomness can-

not be reproduced on real computers. The pseudorandom numbers mimic the basic property of the random

numbers of being uncorrelated as well as statistically uniformly distributed. The latter feature is however
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satisfied only when infinitely many numbers are involved. Indeed, there is a nonzero probability to obtain

any given number more than once. Moreover, the numerical error made using a sample of N pseudorandom

numbers is of order of N�1/2, which implies a rather slow convergence when N! 1.

An alternative choice to the pseudorandom numbers does exist, and is represented by the so-called

‘‘quasi-random’’ numbers. Sequences of such numbers, also called low-discrepancy sequences, were first
introduced by J.G. van der Corput in 1935, popularized by Niederreiter [1], and exploited in some appli-

cations in physics and in financial mathematics, see [2,3]. These sequences are built using strictly determin-

istic uniformly distributed numbers, which are strongly correlated. In spite of such a correlation, these

numbers have been successfully used in some problems, instead of their pseudorandom analog. When this

can be done, the advantage is great, in that the inherent numerical error is in this case deterministic and of

order of N�1logd � 1N, where d is the dimension of the random variables being simulated. In practice, it is

observed that destroying somehow the correlation among the quasi-random numbers, the uniformity of

their distribution is also affected. On the other hand, reducing such a correlation is mandatory in order
to reproduce precisely the truly random nature of the phenomena being investigated.
2. Generalities on solving SDEs with quasi-random numbers

Consider, for the purpose of illustration, the van der Corput sequence. It works as follows: For every

integer number out from a given set, write it in binary form, then write down its digits in the reverse order,

and take the fractional binary number whose mantissa is given by such last sequence of binary digits. Fi-
nally, transform back the latter into a number in base 10. This will be a number between 0 and 1, and it can

be proved that all numbers obtained in this way are uniformly distributed on the interval [0,1]. For instance,

the decimal number 1 is represented in base 2 by 01, reverting it we obtain 10, then 0.10, which in base 10 is

0.5. Similarly, from the integers 2 and 3 we obtain, symbolically: 2 ! 10 ! 01 ! 0.01 ! 0.25;

3 ! 11 ! 11 ! 0.11 ! 0.75. Therefore, the van der Corput sequence constructed from the integers

1,2,3 is given by 0.5, 0.25, 0.75. Any other numerical basis instead of 2 can be used provided that such

a basis is a prime number. The ensuing sequences are called Halton sequences. Other sequences of

quasi-random numbers have been derived in the literature, following different approaches.
Despite the success achieved by quasi-random numbers in evaluating multidimensional integrals, it

seemed for some time that they would fail in solving numerically stochastic dynamical systems, such as
_x ¼ f ðxÞ þ gðxÞnðtÞ; x ¼ x0; ð1Þ

where n(t) represents a gaussian white noise process,
hni ¼ 0; hnðtÞnðt0Þi ¼ dðt � t0Þ; ð2Þ

see [4]. Such a problem can be numerically solved upon time discretization by a variety of schemes [5]. In

this paper, two such schemes have been used. The simplest one is the Euler scheme, given by [5,6]
xiþ1 ¼ xi þ f ðxiÞDt þ
ffiffiffiffiffi
Dt

p
gðxiÞfi; ð3Þ
where xi represents an approximation to x(ti), ti = iDt, i = 1,2, . . . ,M, which turns out to be of order 1/2 as a

‘‘strong method’’ (i.e., when one computes paths), and of order 1 as a ‘‘weak method’’ (when computing

moments). Higher-order methods do exist, for instance
xiþ1 ¼ xi þ fDt þ
ffiffiffiffiffi
Dt

p
gfi þ

1

2
gg0ðf2i � 1ÞDt þ 1

2
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where all quantities f, g, and their derivatives are evaluated at xi, which is based on the stochastic Taylor

formula [5]. It can be shown that, computing moments through such a formula, the error is of order 2. For

this reason, it is often referred to as an ‘‘order 2.0 weak Taylor scheme’’, see [5]. In both equations, the fis
and the gis denote independent random numbers, distributed according to a gaussian distribution with zero

mean and unit variance. The moments of the solution to Eq. (1) can be obtained evaluating N times the
sequence xi for i = 1,2, . . . ,M, and then taking averages over the ensemble of size N.

Clearly, in practice the fis and the gis are obtained generating pseudorandom or quasi-random se-

quences. Despite the negative results reported in [4], we can show that such a numerical integration can

be accomplished correctly by a careful implementation of quasi-random sequences, and actually this can

be done very efficiently.

The main problem encountered using sequences of quasi-random numbers being the correlation among

them, it is natural to try to destroy it. This goal can be achieved ‘‘scrambling’’ somehow these numbers. A

possible way to do it is provided by a reordering strategy, which consists of relabeling at each time step all
positions xi inside the ensemble according to their amplitude, e.g., by decreasing or increasing amplitudes.

Such a procedure was earlier proposed in [7,8] to solve diffusion problems by particle simulations. In this

paper, we adopted a similar strategy to solve numerically rather general systems of SDEs, hence generating

paths of rather general stochastic processes.

While there are many ways to scramble a given sequence, reordering seems to be the optimal way. This is

because reordering best respects uniformity of the sequence, and moreover it is algorithmically simple. It is

easy to see that reordering amounts to premultiplying by a permutation matrix the vector containing all

positions at each time step.
Numerical experiments show that often reordering is very effective, yet sometimes it fails. The point is

that, while it seems to be necessary, it may not be enough. In fact, certain quasi-periodicities affect all se-

quences of quasi-random numbers, thus introducing unwanted regularities. Such regularities represent

correlations among the numbers, whose overall effect is a departure from the truly random behavior that

we are supposed to mimic. The periodicity inherent to all sequences of pseudorandom numbers is also

unwanted, but others than in case of quasi-random numbers, such a periodicity is usually so large that

it cannot be perceived in practice, see [9].

To make it clear what we mean by periodic or quasi-periodic behavior, consider the 1D brownian mo-
tion equation, and try to solve it numerically by a random walk approximation, using the van der Corput

sequence. The first few numbers are: 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, . . . To simulate 1D random walks,

what only matters is knowing whether one should move either to the left or to the right. This should occur

with the same probability, and thus every quasi-random number of the sequence, lying in [0,0.5) implies

movement to the left, while every number in [0.5,1) does it to the right.

On the top part of Fig. 1, a sequence of arrows denotes a sequence of left- and right-motions associated

to the aforementioned random walk (those pointing upward, e.g., denote displacement to the right). For

simplicity, suppose that only N = 6 realizations of the paths have been used. Then, in this case, the sequence
of arrows should be used in sections of six, in that we need the first six arrows to assign the direction of the

random walks at the first time step. The first six arrows are added to the initial positions (for simplicity

taken all equal to zero). Reordering the so-obtained sequence according to increasing size, then yields

the three first arrows upward and the last three downward (see Fig. 1 at time Dt). At the next time step

(time 2Dt), the latter sequence is subject again to random walk motion, requiring the next available string

in the quasi-random number sequence. The output is then reordered as above. Note that, proceeding in this

way, the first upward arrow (first realization) increases in size monotonically, while the last one similarly

decreases. Therefore, this procedure cannot lead to imitate any random walk. Clearly, it is the evenness
of the realization number, N, that spoils the procedure. In other words, a keen choice would require that

N be not divisible by 2, which is the prime number underlying the van der Corput sequence. Similarly, when

using other Halton-type sequences, characterized by the prime number p, one should avoid realization
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Fig. 1. Sketchy diagram illustrating the effect of random walk discretization of the 1D brownian motion using the van der Corput

sequence. Here, the sample size is N = 6.
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samples whose size is divisible by p. In Fig. 2(a), the numerical error made computing the second moment

of the 1D brownian motion at some fixed time is shown, as a function of the number of realizations. Here, a

random walk approximation of the brownian motion has been made. To this purpose we used the Halton

sequence with p = 3 as the van der Corput sequence was used in Fig. 1, that is recording upward and down-

ward arrows accordingly to the previous rule. Note that a number of peaks appear correspondingly to real-

ization numbers N divisible by 3, and higher peaks appear when N is divisible by powers of 3. In Fig. 2(b),
the FFT of such a sequence is shown. In this case the pattern in Fig. 1 becomes a little more involved, the

sequence being quasi-periodic rather than merely periodic. However, the presence of sub-periods implies

the same drawbacks observed using the van der Corput sequence. In Fig. 2(b), only the harmonics in

the FFT are shown which occur at integer abscissas (periods), in that only these matter, in view of the divis-

ibility of N.
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Fig. 2. (a) Numerical error made in computing the second moment of the 1D brownian motion at some fixed time. The brownian

motion was approximated by a random walk. (b) Peaks in the FFT of the Halton quasi-random number sequence with base p = 3.

Parameters are N = 1997, Dt = 0.001.
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2.1. 1D SDEs

For the purpose of illustration, consider the examples
ðaÞ _x ¼ n; hx2i ¼ 4þ t;

ðbÞ _x ¼ exþ xn; hx2i ¼ 4eð1þ2eÞt;

ðcÞ _x ¼ x� x3 þ n; hx2i � 1:0418; t ! 1;

ð5Þ
all with x0 = 2, which correspond, respectively, to brownian motion, a case of multiplicative noise dynam-

ics, and motion in a bistable Duffing potential subject to random perturbations. Here, the Euler scheme was

adopted to simulate the paths. In order to generate gaussian random numbers, a pseudorandom or a quasi-

random number is picked up from a uniform distribution on [0,1], and then the inverse error function is

applied to it. Other methods for generating gaussian numbers do exist, and have been successfully used with

pseudorandom number sequences; see for instance the well known Box–Muller method [5]. However, such

a method neither shows any advantage nor performs better than the inverse error function method when

quasi-random sequences are used [7].
In Fig. 3, the numerical error made in computing the second moment, Æx2æ, is plotted as a function of

time. Such an error can be obtained since in cases (a) and (b) the analytical solution of it is known, while

in case (c) only an asymptotic representation is known. For this reason only relatively large times were con-

sidered in Fig. 3(c). In Fig. 3(a), results obtained by means of quasi-random sequences without reordering

are also shown, and they blow up rapidly, as expected.

In Tables 1–3, the second and fourth columns labeled by ‘‘Time’’ show the overall computational time

(in seconds) spent in solving the stochastic differential equations given in examples (a), (b), and (c), respec-

tively. In the second column, this has been done using quasi-random sequences, while in the fourth column
pseudorandom numbers were used in a single run. In the third column, the relative error made using quasi-

random numbers is shown, while in the fifth column the root mean square of the relative error is shown

when pseudorandom numbers were used. Such a root mean square error has been obtained running 100

different batches each consisting of N realizations.

Three different numbers of realizations have been used, labeled by N in the first column. Note that, for

instance in Table 1, using pseudorandom numbers the CPU time necessary to achieve the smaller relative

error (order 10�4) is almost 53 times larger than that made using quasi-random numbers. Similar results can

be seen in Tables 2 and 3. Therefore, the advantage of using quasi-random over pseudorandom sequences is
clear, results being spectacular in these cases. The differences in CPU time, when quasi-random and pseu-

dorandom sequences were used, for a fixed N, are merely due to the reordering procedure. The latter is

mandatory for a successful implementation of quasi-random sequences.

Quasi-random sequences of numbers can also be implemented successfully in numerical schemes of higher

order. To illustrate the performance achieved doing so, we have solved numerically example (b) with e = 1,

for a much larger time-step, i.e., Dt = 0.01, and two different numerical schemes, the Euler method, Eq. (3),

and the order 2.0 Taylor method, Eq. (4). In Fig. 4, a comparison is made between the results obtained by

such methods, solving numerically example (b) by means of pseudorandom and quasi-random sequences.
The order 2.0 Taylor scheme in (4) involves two gaussian random numbers, which are obtained through

two independent sequences of quasi-random numbers. These are picked up from Halton sequences corre-

sponding to two different numerical bases, 2 and 3, respectively. In Table 4, the second and fourth columns

display the relative error and the root mean square error made solving example (b) by the Euler method with

quasi-random and with pseudorandom sequences, respectively. The third and fifth columns show the results

of the numerical solution obtained by an order 2.0 Taylor scheme. Note that the higher-order method does

indeed perform better than the Euler method, the larger the number of realizations,N, the better. In fact, two

sources of error should be considered. The first is the statistical error, which is related to the finite size of the



Fig. 3. 1D problems: (a) brownian motion, (b) multiplicative noise, (c) bistable Duffing potential. Parameters are N = 1997, and

Dt = 0.001. The numerical scheme adopted was Euler�s.

Table 1

CPU time in seconds and relative error for example (a)

N Quasi-random Pseudorandom

Time Error Time Error2
1=2

999 0.60 2.64 · 10�4 0.44 3.13 · 10�2

9999 6.97 4.51 · 10�5 2.18 9.42 · 10�3

99,999 87.02 6.79 · 10�6 32.10 2.76 · 10�3
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sample, N, and turns to be of order N�1/2 for pseudorandom numbers, and of order N�1logd � 1N (for a

suitable ‘‘dimension’’ d) for quasi-random sequences [2]. The second is the truncation error, which can be

reduced upon adopting higher-order schemes. Only when N is sufficiently large the effect of taking higher-

order methods can be observed. Note that when N = 99,999 and using quasi-random sequences, the error is

of order 10�2 with the Euler method and of order 10�4 with the Taylor method, as expected.



Fig. 4. Comparison between the error attained solving numerically example (b) with e = 1, by means of an Euler scheme and a Taylor

order 2.0 weak scheme. In both cases, quasi-random sequences of numbers with reordering were used, and pseudorandom numbers for

the Euler case. Parameters are as in the previous figure, except now with Dt = 0.01.

Table 2

CPU time in seconds and relative error for example (b) with e = �1

N Quasi-random Pseudorandom

Time Error Time Error2
1=2

999 0.60 2.33 · 10�3 0.44 5.79 · 10�2

9999 7.00 9.40 · 10�4 2.16 2.69 · 10�2

99,999 84.55 6.46 · 10�4 33.89 7.06 · 10�3

Table 3

CPU time in seconds and relative error for example (c)

N Quasi-random Pseudorandom

Time Error Time Error2
1=2

999 6.02 5.27 · 10�3 2.26 3.39 · 10�2

9999 71.03 5.31 · 10�4 32.01 8.94 · 10�3

99,999 860.33 1.07 · 10�4 321.18 3.02 · 10�3
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2.2. Computing first passage times

Another important issue concerning physical systems affected by random perturbations is the evaluation

of first passage times [10]. In Fig. 5, the probability density function of the first passage time is plotted as a

function of time, correspondingly to the brownian motion (example (a)) and to the Ornstein–Uhlenbeck

dynamical system
_x ¼ �xþ 1þ n; x0 ¼ 0: ð6Þ



Fig. 5. First passage time probability density function: (a) brownian motion; (b) Ornstein–Uhlenbeck process. Parameters are as in

Fig. 3.

Table 4

Relative error for example (b) with e = 1 and two different numerical schemes

N Quasi-random Pseudorandom

Euler Taylor order 2.0 Euler Taylor order 2.0

999 1.75 · 10�2 4.13 · 10�3 6.68 · 10�2 5.48 · 10�2

9999 1.17 · 10�2 1.53 · 10�3 2.97 · 10�2 1.76 · 10�2

99,999 1.24 · 10�2 6.53 · 10�4 2.01 · 10�2 7.78 · 10�3
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To obtain such plots, the equations above have been solved numerically for a number of paths, and the first

time when each path crossed the level x = 1 has been recorded. Then, the probability density has been ob-

tained as an histogram. Again, the analytical solutions were available in these cases, see [11]. In solving such

problems, a rather small time step has been chosen, because otherwise the numerical error made in captur-

ing precisely the first exit time may dominate the overall computation, see [12–14]. Results obtained by

quasi-random numbers outperform those achieved by pseudorandom numbers, unless times become too

large. This deterioration is due to two reasons. One is that reordering becomes less and less effective,

because the involved permutation matrices tend to the identity matrix. The other is that there are fewer
realizations left that can be exploited when time becomes exceedingly large.

2.3. Multidimensional SDEs

In principle, quasi-random numbers sequences can be used to integrate numerically multidimensional

stochastic dynamics as well. Consider two examples given by the 2D brownian motion and by a 2D mul-

tiplicative noise system,
ðaÞ
_x ¼ n1;

_y ¼ n2;

�
; hx2i ¼ hy2i ¼ 4þ t; ð7Þ
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ðbÞ
_x ¼ �xþ yn1;

_y ¼ �y þ xn2;

�
hx2i ¼ hy2i ¼ 4e�t; ð8Þ
with the initial values x0 = 2, y0 = 2. An effective implementation has been made picking up numbers from

two Halton sequences characterized by two different bases of primes, e.g., p = 2 and p = 3, each for every

dimension. Reordering here is not straightforward, in that the plane is not a totally ordered set as the line is.

A reordering, first according to the distance from the origin, and then according to the angle, was accom-

plished in this case. This rearrangement can be termed a full reordering, while a partial reordering consists

only acting on the distances from the origin. From Fig. 6, and Tables 5 and 6, the advantage of using quasi-
random instead of pseudorandom numbers appears clearly, as well as that of using full reordering instead

of partial reordering.

The entire approach proposed in this paper can be followed also to solve the more realistic problem

of stochastic dynamical systems affected by colored noise, e.g., see [15]. In fact, replacing white noise with
Fig. 6. 2D problems: (a) 2D brownian motion; (b) 2D multiplicative noise. Parameters are as in Fig. 3.

5

ime in seconds and relative error for example (a)

Quasi-random Pseudorandom

Time Error Time Error2
1=2

3.06 1.14 · 10�3 2.28 2.87 · 10�2

36.54 2.45 · 10�4 23.51 7.21 · 10�3

450.55 2.29 · 10�5 255.06 2.88 · 10�3

6

ime in seconds and relative error for example (b)

Quasi-random Pseudorandom

Time Error Time Error2
1=2

1.56 1.07 · 10�2 1.16 7.30 · 10�2

18.37 1.60 · 10�3 12.08 2.45 · 10�2

228.92 7.66 · 10�4 123.10 7.15 · 10�3
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colored noise in some system amounts to substituting the original system with a larger one only affected by

white noise, see [16–18]. First passage times are often much longer in systems driven by colored noise, due

to their inherent correlation time. Therefore, computing first passage times by quasi-random numbers may

be less effective in this case.
3. Conclusion

Summarizing, we have shown that stochastic dynamical systems can be solved numerically adopting se-

quences of quasi-random numbers. This can done efficiently provided that some care is paid to their imple-

mentation. In particular, a reordering strategy should be used to destroy correlations which affect such

sequences. It was also shown that such an action, in general, may not suffice, in view of periodicity or

quasi-periodicity which characterizes such sequences. This difficulty can be overcome by a careful choice
of the sample size being used in the numerical simulations.
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